CR 52,089 1.

X63 16749

150

Ultraviolet Absorption Coefficients of CO2, CO,

 0_2 , H_20 , N_20 , NH_3 , NO, SO_2 , and CH_4 Between

1850 and 4000 A

Code 2A

by

B. A. Thompson, P. Harteck,

and

R. R. Reeves, Jr.

(NASA CR-52089)

UNPUBLISHED PRELIMINARY DATA

Rensselaer Polytechnic Institute
Troy, N.Y.

[3]

(NASA NSG 261-62)

Sept**Ann** 9, 1963

refo Sabratted for Publico tien

ingly is to the first and

Ultraviolet Absorption Coefficients of CO_2 , CO_3 , CO_4

Abstract

167 49

The ultraviolet absorption coefficients have been determined for CO_2 , CO_3 , CO_4 , CO_4 , CO_5 , CO_4 , CO_5 , $CO_$

Introduction

Ultraviolet absorption coefficients reported in the literature fall, in general, into two categoriess those determined at wavelengths below 1850 A and those determined at wavelengths above 2500 A. The intermediate region, between 1850 and 2500 A is of great interest in connection with photochemical studies of planetary atmospheres since the high intensities of the solar radiation and the long path lengths through the atmospheres may result in significant amounts of photochemical reactions even where the absorption coefficient is very small. The excellent work of Watanabe, Zelikoff, and Inn (1953) covers this wavelength range for many gases, but, in general, does not give values below 0.1 cm⁻¹. For these reasons the absorption coefficients of a number of gases which are known to be either major or minor constituents of various planetary atmospheres were determined

Experimental

Description of Apparatus: Absorption experiments were carried out using a Perkin-Elmer Model 350 absorption spectrophotometer. This is a double beam instrument covering the spectral region from about 1850 A to 2.7 μ . For these studies measurements were made between 1850 and 4000 A. Using a 10 cm path length and a scale expansion of 50 it was possible to measure absorption coefficients as low as 10^{-4} cm⁻¹.

<u>Purification of Gases</u>: The gases studied were CO_2 , CO_3 , O_2 , O_2 , O_3 , O_4 , O_5 , O_6 , O_6 , O_8 , O_8 , O_8 , O_8 , O_9 ,

Results

The results obtained for all gases except CH_4 are shown in Figures 1 through 8 which show the absorption coefficients as a function of wavelength. In each case the path length was 10 cm and the reference cell was filled with either N_2 or Ar. CO_2 , CO, CH_4 , and O_2 were measured at near atmospheric pressure. The H_2O pressure was 20 mm and the strongly absorbing gases NO, N_2O , NH_3 , and SO_2 were measured at lower pressures. The pressures employed in each case are listed in Table I. For CH_4 no

absorption could be detected, showing that the absorption coefficient is less than 10⁻⁴ cm⁻¹ throughout the entire range investigated.

Discussion

The results for CO_2 , CO_2 , and O_2 (see Figures 1, 2, and 3) are discussed in detail elsewhere (<u>Harteck, Reeves, and Thompson</u>, 1963). For CO_2 it is found that absorption does occur in the wavelength region above 1750 corresponding to the spin-forbidden dissociation into ground-state products. CO exhibits absorption in this region only weakly in the narrow Cameron bands corresponding to the excitation to the $a^3\Pi$ level. The absorption coefficient of O_2 in the wavelength region between 2050 and 4000 A must be less than 10^{-4} cm⁻¹ since no absorption was observed in this region.

 H_20 shows continuously decreasing absorption for wavelengths longer than 1850 A. The present results complement those of <u>Watanabe</u> et al. (1953) and extend them by over two orders of magnitude as shown in Figure 4. Similar remarks apply to the continuous absorption by N_20 (Figure 5).

For NH₃, NO, and SO₂ (Figures 6, 7, and 8) which show band structure rather than continuous absorption, the values obtained for the absorption coefficients will vary with the instrumental resolution employed. Nevertheless reasonable agreement was found with the results of <u>Watanabe et al.</u> (1953) for NH₃ and NO and with those of <u>Golomb</u>, <u>Watanabe</u>, and <u>Marmo</u> (1962) for SO₂. The lack of absorption observed for CH₄ is in agreement with the results of <u>Watanabe et al.</u> (1953) since extrapolation of their data indicates that the absorption coefficient should be below 10⁻⁴ cm⁻¹ at these wavelengths.

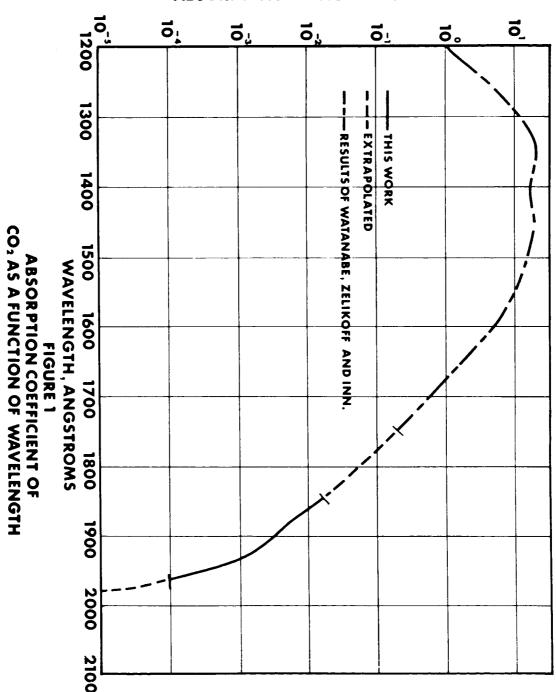
References

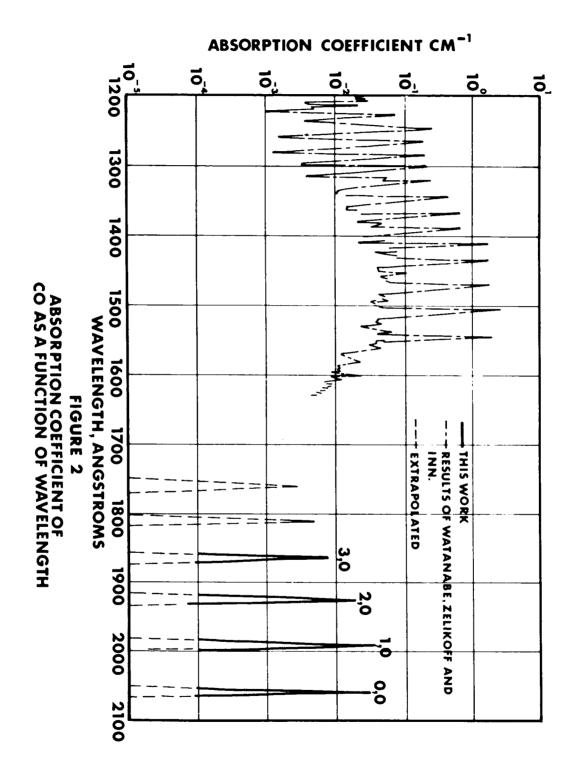
- Golomb, D., K. Watanabe, and F. F. Marmo, Absorption Coefficients of Sulfur Dioxide in the Vacuum Ultraviolet, J. Chem. Phys. <u>36</u>, 958, 1962.
- Harteck, P., R. Reeves, Jr., and B. A. Thompsom, Photochemical Problems of the Venus Atmosphere, NASA TN D-1984, 1963.
- Watanabe, K., M. Zelikoff, and E. C. Y. Inn, Absorption Coefficients of Several Atmospheric Gases, <u>AFCRC Tech. Rpt.</u> 53-23, 1953.

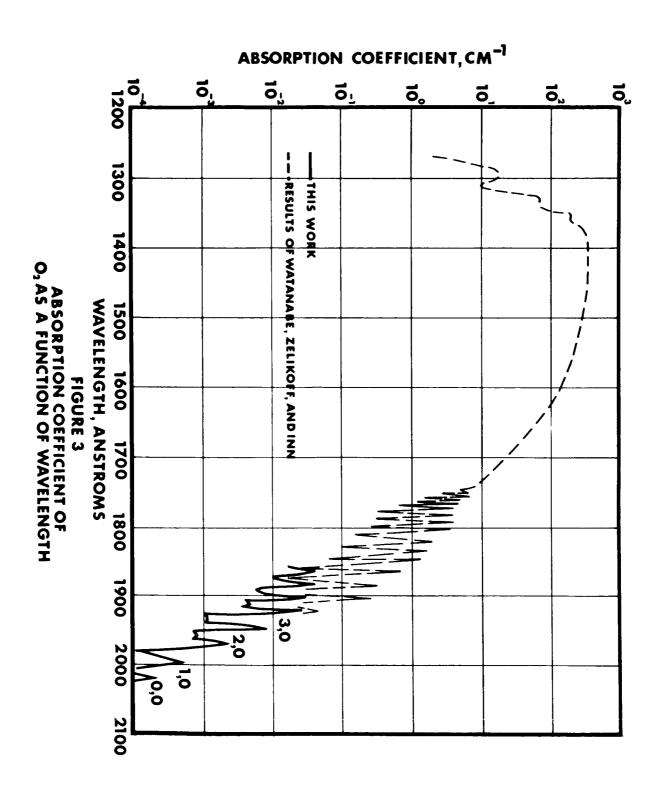
Table I

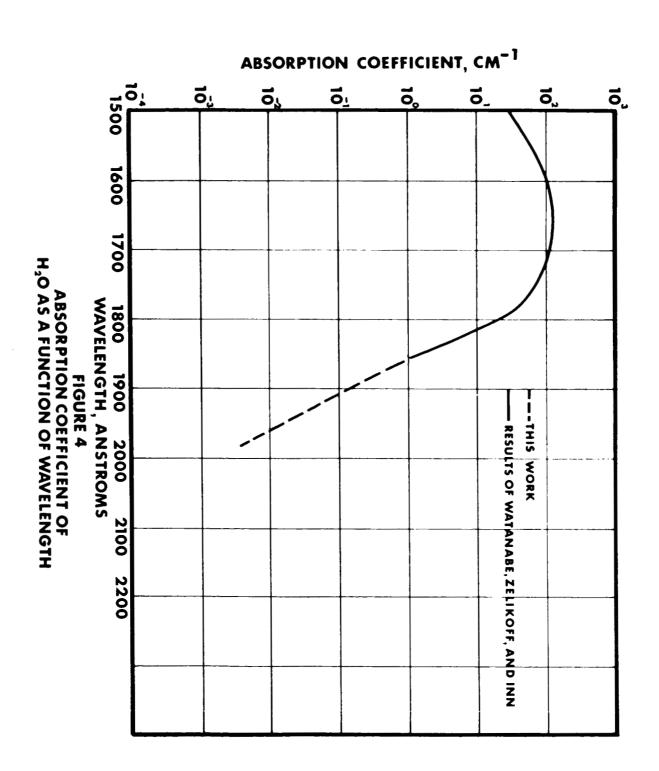
Gas Pressures Employed for Absorption

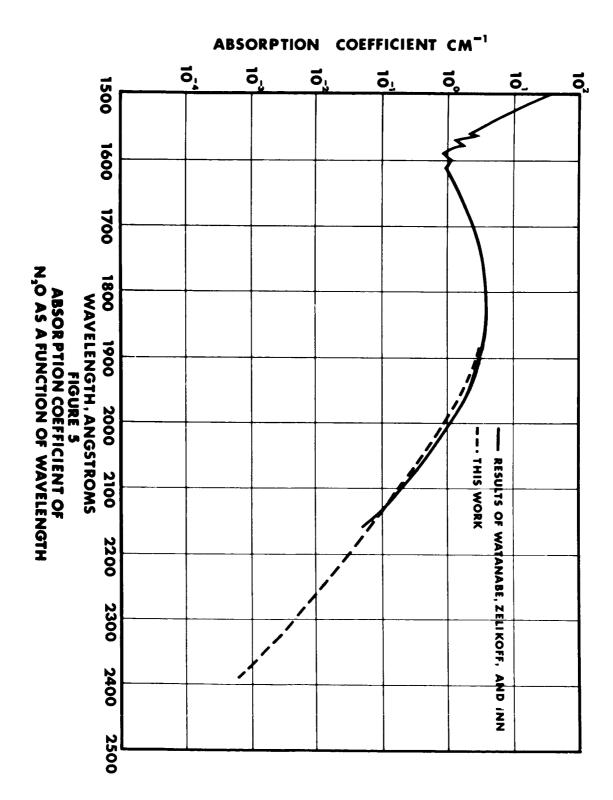
Measurements

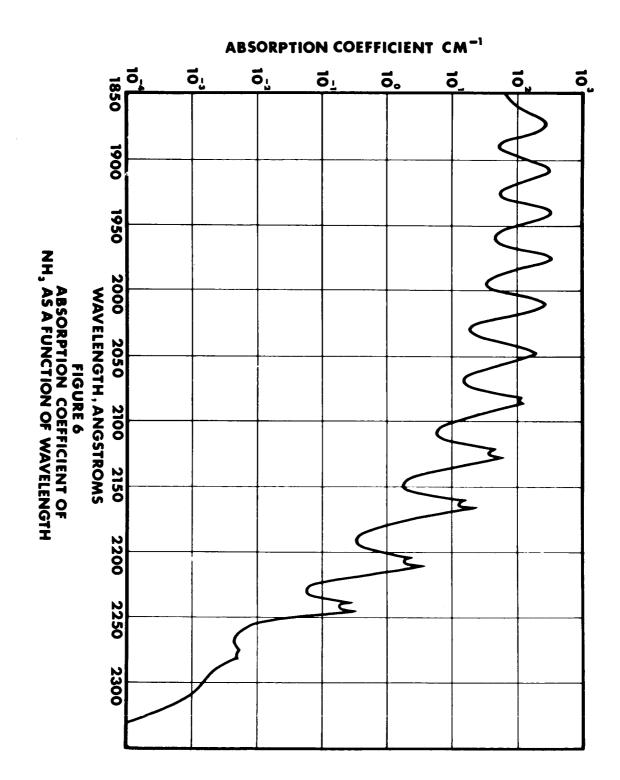

Gas	Pressure, mm.
C02	700
co	660
02	720
H ₂ 0	20
N ₂ 0	326, 2050 - 4000 A 6, 1850 - 2050 A
NH ₃	760, 2250 - 4000 A 100, 2250 - 4000 A 5, 1850 - 2150 A 0.1, 1850 - 2150 A
NO	6*
\$0 ₂	5, 2000 - 4000 A 0.259;1850 - 2200 A
CH4	750

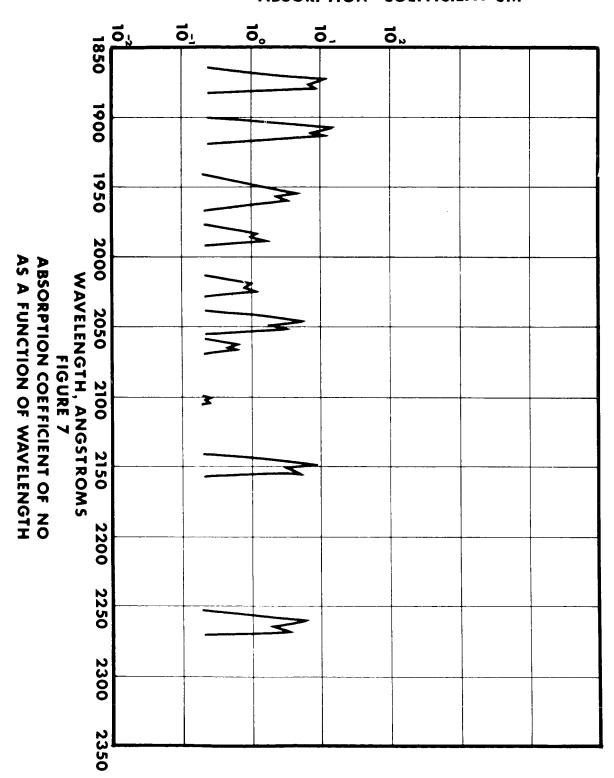

 $[\]ensuremath{^{\star}}\xspace \text{NO}$ was measured at low pressures to avoid interferences from dimerization.

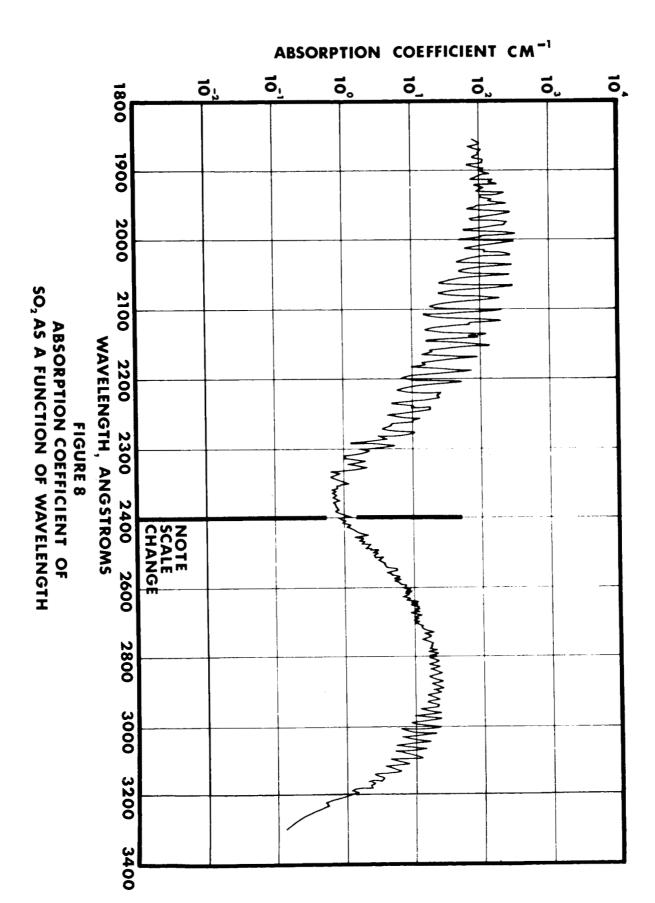

List of Figures


FIGURE	1	Absorption	Coefficient	of	CO ₂ As a Function of Wavelength.
FIGURE	2	Absorption	Coefficient	of	CO As a Function of Wavelength.
FIGURE	3	Absorption	Coefficient	of	0 ₂ As a Function of Wavelength.
FIBURE	4	Absorption	Coefficient	of	H ₂ O As a Function of Wavelength.
FIGURE	5	Absorption	Coefficient	of	N ₂ 0 As a Function of Wavelength.
FIGURE	6	Absorption	Coefficient	of	NH ₃ As a Function of Wavelength.
FIGURE	7	Absorption	Coefficient	of	NO As a Function of Wavelength.
FIGURE	8	Abs o rption	Coefficient	of	SO ₂ As a Function of Wavelength.


ABSORPTION COFFICIENT CM-1







ABSORPTION COEFFICIENT CM-1

(a,)

4 . . .